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Abstract

An algorithm for stabilizing the angular position of a spacecraft with dynamic elastic elements possessing dissipative properties
is proposed, based on bang-bang feedback with delay. The control is achieved under conditions of uncertainty. The accuracy of the
equation is demonstrated by a numerical example.
© 2006 Elsevier Ltd. All rights reserved.

The problem of controlling a rigid body with flexible elements was actively investigated in the last quarter of the
last century. The problem of synthesizing a control which ensures asymptotic stability of the solutions of the system
and also optimality of the controls has been considered within the framework of linear theory.1–3 The effect of viscous
damping on the stability of the control process was investigated in Ref. 4. The problem of stabilizing artificial satellites
with viscoelastic panels of solar batteries was solved in problems of the mechanics of space flight in Refs. 5,6.

Recently a range of problems of the mechanics of space flight, solved over a long time interval, taking into account
parametric uncertainty, unknown external perturbations, uncertain delay time in the operating and observing systems,
incomplete observability of the system, the discreteness of modern digital control systems, the need to damp oscillations
of elastic components, fast and slow displacements for systems with an infinite number of degrees of freedom and the
effect of gravitational forces, has recently been investigated and considerably extended.

A new successful scheme for controlling spacecraft under conditions of parametric uncertainty, weak natural damp-
ing of the elastic oscillations of the structure, discrete measurements of only accessible coordinates and the presence
of delay when setting up the equation was recently proposed in Ref. 7. A bang-bang profile control algorithm was
developed in Ref. 8, which reduces the amplitude of the oscillations of elastic elements in the orientation of the space-
craft. The evolution of the motion of an artificial satellite with viscoelastic rods in a circular orbit, taking the effect of
gravitational forces into account, was investigated in Ref. 9.

Below we consider the problem of stabilizing the angular position of a spacecraft with two dynamically elastic com-
ponents about its centre of mass using jet engines possessing unknown delay. Two new bang-bang control algorithms
are proposed, taking into account the uncertain delay and external perturbations. One algorithm is obtained by syn-
thesizing a traditional two-pulse optimal control and a local bang-bang stabilization algorithm.10 The other algorithm
provides non-local stabilization of the system.11 Similar problems were considered previously in Refs. 10–14.
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Fig. 1.

1. Formulation of the problem

Consider a spacecraft, represented by a rigid body with two dynamic elastic elements (rods) (Fig. 1). We will
assume that identical viscoelastic rods are fastened symmetrically and that the oscillations of the elastic structure are
small. We will only consider the controlled motion around the longitudinal axis of the spacecraft. Suppose the rods
execute antisymmetric oscillations. We can therefore confine ourselves to considering only one rod, and the effect of
their interaction on the main body is doubled. A similar problem has already been considered in the literature (see, for
example, Ref. 2).

We will introduce the following notation: r is the distance from the longitudinal axis to the point where the rod is
fastened, l is the rod length, EI is the flexural stiffness of the rod, � is the coefficient of internal viscous friction, m is
the mass per unit length of the rod, J0 is the moment of inertia of the spacecraft about the OZ axis and M is the control
moment applied to the spacecraft.

Suppose the first three systems of coordinates are defined as follows: Ox0y0z0 is the inertial system of coordinates
with origin O at the centre of mass of the mechanical system, Ox1y1z1 is a system of coordinates rigidly connected
to the spacecraft with origin at the point O, and O1xyz is a system of coordinates connected with the undeformed rod
with origin at the point O1.

The position of the system Ox1y1z1 is defined by the angle of rotation �(t) of the spacecraft. The deflection of the
rod from the O1x axis will be denoted by y(x, t) (Fig. 2).

Considering the action integral and taking its variation into account, we obtain by standard methods the following
equations of the free oscillations of the system

Fig. 2.
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with boundary conditions

Here J is the moment of inertia of the whole system.
If control is achieved by means of a torque u(t − h(t)), applied to the body, the rods possess dissipative properties

and external perturbations f act on the rigid body, the equations of free oscillations of the system take the form

(1.1)

(1.2)

Using Bubnov’s method, we can assume approximately that

(1.3)

where �i(x) is the natural form corresponding to the positive eigenvalue �i of the positive self-conjugate operator

where

We substitute representation (1.3) into Eqs. (1.1) and (1.2). We then multiply the equation obtained on substitution into
Eq. (1.2) by �j(x) and integrate over the section [0, l], using the property of orthogonality of the eigenfunctions. As a
result we obtain a system of ordinary differential equations for determining � and qi

(1.4)

(1.5)

where

and the quantity f now represents not only the external perturbations but also the inaccuracy of the model, connected
with the approximate representation of y(x, t).

We will put
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In this case system (1.4), (1.5) is equivalent to the system

(1.6)

where

It is important to note that the variables � and q are separable here.
Suppose the symmetric matrix JA - 2ppT is positive definite. It can be shown that the unperturbed open system

for system (1.6), ignoring dissipation, has a spectrum consisting of a single zero root of multiplicity 2 and k complex
conjugate pairs, lying on the imaginary axis. (For this it is sufficient to use certain assertions from linear algebra on
regular beams of quadratic forms15.) In the case of slight dissipation in the elastic elements the complex-conjugate
pairs are shifted into the left complex half-plane, thereby ensuring the stability of the subsystem corresponding to the
elastic elements, while the zero multiple root, as before, remains unchanged.

We will construct an equation which ensures that the quantity � is stabilized. By virtue of the stability of the
subsystem for the elastic elements for small perturbations and the small control for long times, the oscillations of the
elastic elements will be small.

It should be noted that the quantities qi are often not directly observable, and hence to synthesize the control with
feedback with respect to the variable � it may be necessary to construct an observer.

2. Attractive control

We will put � = �̇ and in the phase plane (�, �) we will investigate the dynamic flux

(2.1)

where u can take only two values, namely, +1 and −1. Suppose that, in a certain time interval [t0, t1], the identity u ≡ 1
holds. Then, system (2.1) has the form

Hence it follows that �2 − 2� = c1. When u = −1 in the section [t0, t1] we have

Hence, in the phase plane (�, �), motion occurs along two families of parabolae

We will distinguish two branches of the parabolae

Finally, in the phase plane (�, �) we define two regions of initial data

The attractive control u will only be determined by the fact that the initial point (�0, �0) belongs either to the region
G+ or G−. Suppose (�0, �0) ∈ G+ (Fig. 3). Then the point (�(t), �(t)) in the initial time interval (0, T1) moves along the
parabola
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Fig. 3.

up to the instant T1 where it meets the curve � at the point (�1, �1). Simple calculation shows that

In this case T1 = �0 + √
�0/2. In the second interval (T1, T2) the phase trajectory moves along the curve �− to the left

and arrives at the origin of coordinates after a time T2 − T1; here T2 = �0 + 2
√

�0/2. Henceforth we must put u = 0.
Hence, for (�0, �0) ∈ G+

(2.2)

The qualitative picture is similar for the case (�0, �0) ∈ G−.

3. Local stabilization

Since the control u has a certain delay and unknown external perturbations act on the system, for small h(t) and
f(t), using Eq. (2.2), one need not take the system as being strictly at the origin of coordinates but in a certain small
neighbourhood of it. Hence, for the case of a retaining control one can assume that the initial point (�0, �0) is in the
vicinity of the origin of coordinates, and we can consider the system

(3.1)

The control u will be sought in the form

The parameters p, c > 0 will be indicated below.
Making the change of variables s = c� + � in system (3.1) (see Ref. 16), we will have

(3.2)

Suppose � > 0 is an arbitrary number, defining the radius of the neighbourhood of the origin of coordinates within which
the solution must be contained. We will assume that 0 < h(t) < h0 and the parameters c and p are chosen as follows:

Theorem 1. If

then |�(t)| < � for all t > t0.
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Proof. Suppose �0 = c�/2, then

We substitute the quantity

(3.3)

into the second equation of (3.2). We will first show that |s(t)| < �0 for any t > t0. Let us assume the opposite. Then an
instant of time T > t0 exists, such that |s(T)| = �0. Obviously

and hence the last instant of time t* ∈ [t0, T) exists at which s(t*) = �0 and �0 < s(t) < �0 for all t ∈ [t*, T]. We will prove
that in this case T − t* > h0. For this we will first estimate the right-hand side of the second Eq. of (3.2) in the interval
[t0, T]. We have

Hence

Therefore for t = T, taking into account the fact that

we obtain

Then, for t ∈ [t* + h0, T) we have sign[s(t − h(t))] = 1, and so

Therefore, for all t > t0 the inequality |s(t)| < �0 holds. It only remains to note that |�(t)| < |�0| + �0/c < �. �

It should be noted that Theorem 1 does not give representations on the qualitative behaviour of the solution of the
system in the �-neighbourhood of zero. Whether the solution will tend asymptotically to a certain equilibrium position
or whether a limit cycle or a strange attractor will arise is unknown. However, numerical results show that such
systems often have oscillatory solutions, and the amplitude of the oscillations depends considerably on the coefficient
p preceding the bang-bang element.

4. Non-local stabilization

The idea of the non-local stabilization algorithm. For the equation

(4.1)

where x ∈ R is a variable state, �, p0 > 0 are the parameters of the system and h0 > 0 is the delay time, certain important
properties of its solution were established in Ref. 17: system (4.1) is stabilizable if �h0 < ln 2, all the non-zero stable
solutions of system (4.1) are oscillatory, and the radius of the neighbourhood of stable oscillations is proportional to
the gain p0.

These properties lead to the conclusion that we can attempt to suggest the algorithm for adapting p0 preceding the
bang-bang element, which will enable us to extend the range of initial data and increase the accuracy of the control.
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It was suggested in Refs. 12 and 13 that the following should be chosen

where p and N are control parameters and Hn(�) is the Heaviside function.
As it applies to the problem of controlling a spacecraft, this control can be interpreted as the possibility of operating

with several modes of operation of the jet engine or as the presence in the spacecraft of several engines of different
power.

The synthesis of bang-bang control for the non-local case. We will consider (3.1) and attempt to modernize the
control u(t − h(t)), starting from the discussions presented above. We will choose arbitrary R and �(R > � > 0). We will
assume that |�0| < R and |�0| < R. It is required to construct a control which stabilizes the solution of system (3.1) in
the �-neighbourhood of zero, |�(t)| < �, |�(t)| < � for all t > T, where T is a certain positive number.

We will construct the control in accordance with the following algorithm.

1◦. We determine the parameters c, � and p such that the following relations are satisfied

2◦. We fix

3◦. We choose an integer N such that it satisfies the inequality

4◦. We determine the sequence �1 < �2 < . . . < �N+1 from the formula

5◦. Finally, we choose the control in the form

(4.2)

Theorem 2. For any initial data |�0| < R and |�0| < R and any limited perturbation |f(t)| < �1c/2, a control u of the
form (4.2) will guarantee the existence of an instant of time T� > t0, beginning from which the following inequalities
will be satisfied

Proof. We will use several properties of the solution of the system

(4.3)
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with a control of the form (4.2), the proofs of which are presented in the Appendix.�

Property 1. We will introduce the function

If |s(t)| < 	 for all t greater than a certain t	, an instant of time tρ > tρ exists such that I(t) < (7	)/(6c) when t > tρ.

Property 2. If, at a certain instant of time Tk > t0 for the solution of system (4.3) the inequalities |s(Tk)| < �k/�,
|s(t)| < �k, are satisfied for t ∈ [Tk − h0, Tk] and I(t) < (7�k+1)/(6c) for t > Tk, then |s(t)| < �k for any t > tk.

Property 3. For any finite T > t0 there is a T0 > T such that s(T0) = 0.

Property 4. If |s(t)| < �k for all t > Tk, an instant of time Tk−1 ≥ Tk exists such that |s(t)| < �k−1 for all t > Tk−1, where
k = 2, 3, . . ., N + 1.

Since |�0| < R, we have |s(0)| = |c�0 + �0| < R0. Hence, by virtue of Property 3 we obtain |s(t)| < �N+1 for all t > 0.
According to Property 4 an instant of time t = TN exists such that the curve s(t) remains in the �N-neighbourhood of
zero for all t > TN, etc. At the N-th step we obtain that an instant of time T1 > 0 exists such that |s(t)| < �1 for all t > T1.

We will show that there is a T� > T1 such that |s(t)| < �0 for all t > T�. It follows from Property 2 that T0 > T1 exist
such, s(T0) = 0. We will show that |s(t)| < �0 for all t > T0. If this was not so, then, at a certain instant of time T′ > T0
the equality |s(T′)| = �0 would be satisfied. Suppose T′ is the first such instant of time. It is easy to see that in this case
T′ − T0 > h0, and so |s(t)| < �0 when t > T0. Since

then, according to Property 1, a T� > T0 exists for which |�(t)| < 4c�0/3 = � when t > T�.
It should be noted that the quantity T� depends on the parameters R, � and c.
It can be seen that the control proposed above for large t will be of the order of �, and consequently, for large t, the

coordinates of qi(t) have the same order.

5. Example

Consider a spacecraft of considerably non-rigid construction with small dissipation in the elastic elements, taking
into account one tone of the oscillations. We will assume that

The corresponding splitting of the system has the form

(5.1)

We will assume that the control possesses delay h(t) = 0.2 and that small external perturbations f(t) = 0.001 sin(t) act
on the system. It can be shown, that for the initial conditions

the attractive control will have the following form

We will define the stabilizing control in the form (4.2) with the following parameters
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Fig. 4.

These control parameters were chosen from the following considerations: the attractive control, by virtue of the delay
and the external perturbations, can operate with an error R ≤ 0.1, while the permissible stabilization error � = 0.007.

In Fig. 4 we show the results of modelling for system (5.1) with the proposed control.

Appendix A

Proof of Properties 1–4. Property 1 is obvious.

Proof of Property 2. We will assume the opposite. Then instants of time T* > Tk: s(T*) = �k a and t*: Tk < t* < T*,
exist for which

We will first show that T* − t* > h0. Note that

Using Gronwall’s lemma we conclude that

This leads to the inequality

Taking into account the fact that � < 3 and ch0 < ln(15/14), we obtain T* − t* > h0. Then, if t ∈ [t* + h0, T*], we will
have sign[s(t − h(t))] = 1 and

Consequently, s cannot reach the boundary �k.
Hence, in particular, it is easy to obtain that if �0 < R and s(0) < R0, then |s(t)| < �N+1 when t > t0.

Proof of Property 3. We will assume the opposite. Then a T* > t0 exists such that s(t) > 0 for all t > T*. It is obvious
that in this case sign[s(t − h(t))] = 1 when t > T* + h0. It can then be shown that

So, for sufficiently large t > T0, we will have
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and consequently s(t) > �1, since otherwise we would obtain

and there would be an instant of time t0 > T such that s(t0) = 0. Proceeding in a similar way we obtain s(t) > �N+1 at the
(N + 1)-th step, which is impossible by virtue of Property 2.

Proof of Property 4. According to Property 1 there is an instant of time tk ≥ Tk such that I(t) < 7�k/(6c) for all t > tk.
It then follows from Property 3 that Tk−1 ≥ tk + h0exists with the property s(Tk−1) = 0.

We will now show that |s(t)| < �k−1 for all t > Tk−1.
Assume the opposite. An instant of time T > Tk−1 then exists such that |s(T )| = �k−1. We will consider two possible

cases.

1◦. The inequality |s(t)| < �k−1 holds for all t ∈ [t, Tk−1]. In this case, according to Property 2 the limit |s(t)| < �k−1
holds for all t > t.

2◦. A t∗ : tk ≤ t∗ < Tk−1 exists for which |s(t*)| = �k−1. Suppose t* is the last such instant of time. In other
words, 0 < |s(t)| < �k−1) when t ∈ (t∗k , Tk−1). Since s(Tk−1) = 0 and |s(T )| = �k−1, a T ∗ ∈ [Tk−1, T ] exists for which
|s(T*)| = �k−1/�. We will prove that T* − t* > h0. In fact, we will denote by D(|s(t)|) the right derivative of |s(t)|.
Then in the section [t*, Tk−1] we have

Using Gronwall’s lemma and assuming t = Tk−1, we obtain

Hence it follows that

We can similarly obtain an upper estimate of |s(t)|

From the last differential inequality we obtain

When t = T* we obtain

Hence it follows that

Further

The inequalities � < 3 and ch0 < ln(15/14) imply T* − t* > h0. So, according to the Property 2 |s(T )| < �k−1, we
have arrived at a contradiction. Consequently, |s(t)| < �k−1 for all t > Tk−1.
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